If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X-238=0
a = 1; b = 3; c = -238;
Δ = b2-4ac
Δ = 32-4·1·(-238)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-31}{2*1}=\frac{-34}{2} =-17 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+31}{2*1}=\frac{28}{2} =14 $
| X+4x-9x=-31 | | -6=4x-6x | | 2(3w-4)-(5w-5)=-w-13 | | f2+25+150=0 | | 30=b-(-2)* | | x-18=28. | | X-2/3x+2.8=-8.2 | | -30-3r=6(r+1) | | 110=10x-40 | | 2(x+7)=-4+17 | | (x+13)+24=180 | | 77=3(7+a)+8(7-6a | | 6x-2x-8=4(x-2) | | -7x+x40=6(-3x+3) | | (7-4.5n)9=22.5 | | F(x)=-(x+3)(x2+2) | | 244*n=3,172 | | ½+x=⅓+x | | 182=7(1-5r) | | –1+6y=–9+2y | | 120x+10=25 | | 118-4x=12x-2 | | 3x+2x+8=43 | | 6x-12=4(4x+2) | | x/7+4=−2 | | F(x)=-(x+3)(x^2+2) | | 45b+11-43b=39 | | 7q+8=-8+3q | | 4(4p+18.75)=26.55 | | 22.5=9(4.5n-7) | | 4(4p+18.75)=25.55 | | (-27.018)=31.572x-17.741 |